首页> 外文OA文献 >Resolving conflicts between statistical methods by probability combination: Application to empirical Bayes analyses of genomic data
【2h】

Resolving conflicts between statistical methods by probability combination: Application to empirical Bayes analyses of genomic data

机译:通过概率解决统计方法之间的冲突   组合:应用于基因组数据的经验贝叶斯分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the typical analysis of a data set, a single method is selected forstatistical reporting even when equally applicable methods yield very differentresults. Examples of equally applicable methods can correspond to those ofdifferent ancillary statistics in frequentist inference and of different priordistributions in Bayesian inference. More broadly, choices are made betweenparametric and nonparametric methods and between frequentist and Bayesianmethods. Rather than choosing a single method, it can be safer, in a game-theoreticsense, to combine those that are equally appropriate in light of the availableinformation. Since methods of combining subjectively assessed probabilitydistributions are not objective enough for that purpose, this paper introducesa method of distribution combination that does not require any assignment ofdistribution weights. It does so by formalizing a hedging strategy in terms ofa game between three players: nature, a statistician combining distributions,and a statistician refusing to combine distributions. The optimal move of thefirst statistician reduces to the solution of a simpler problem of selecting anestimating distribution that minimizes the Kullback-Leibler loss maximized overthe plausible distributions to be combined. The resulting combined distributionis a linear combination of the most extreme of the distributions to be combinedthat are scientifically plausible. The optimal weights are close enough to eachother that no extreme distribution dominates the others. The new methodology is illustrated by combining conflicting empirical Bayesmethodologies in the context of gene expression data analysis.
机译:在典型的数据集分析中,即使适用于同等方法的结果差异很大,也要选择一种方法进行统计报告。同样适用的方法的示例可以对应于频繁推断中的不同辅助统计,以及贝叶斯推断中不同的先验分布。更广泛地说,在参数方法和非参数方法之间以及在常客和贝叶斯方法之间进行选择。在博弈论意义上,与其选择一种方法,不如选择一种方法,结合可用信息,将同样适用的方法组合起来会更安全。由于组合主观评估概率分布的方法尚不足以实现该目的,因此本文介绍了一种不需要任何分配权重分配的分布组合方法。它通过根据三个参与者之间的博弈来制定套期保值策略来做到这一点:自然,统计学家结合分布,统计学家拒绝结合分布。第一统计学家的最优举动简化为选择估计分布的较简单问题的解决方案,该估计分布使要组合的合理分布上最大化的Kullback-Leibler损失最小。所得的组合分布是科学上合理的,要组合的最极端分布的线性组合。最佳权重彼此足够接近,因此没有极端的分布会主导其他权重。通过在基因表达数据分析的背景下结合有冲突的经验贝叶斯方法论来说明新方法。

著录项

  • 作者

    Bickel, David R.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号